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Abstract: We propose a notion of r�rationality, a relative version of satis�cing
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als choose one of their r�best according to a single preference order. We fully
characterize the choice functions satisfying the condition for any r, and pro-

vide an algorithm to compute the maximal degree of r�rationality associated
with any given choice function. The notion is extended to individuals whose r

may vary with the set of available alternatives. Special cases of ordinal rela-
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1 Introduction

In its most classical expression, an individual�s choice behavior is said to be rational if

it results (1) from choosing the best available alternative according to (2) a complete,

re�exive and transitive preference relation on the set of alternatives.

In view of mounting evidence against the observable implications of this simple model

of choice, a growing literature has arisen that proposes a variety of departures from it.

We propose a notion of r�rationality, based on the idea that the choices of individuals
are still guided by a single preference order, but rather than always choosing the very best

available alternative, they are content with selecting one of the r�best. This proposal
provides a purely ordinal and relative version of the classical idea of satis�cing behavior.

No level of satisfaction is exogenously �xed, agents are not full maximizers, but they follow

a clear pattern of behavior whose consequences generate testable implications.

We provide necessary and su¢ cient conditions for choice functions to be r�rationalizable,
for any r ranging from 1 to the total number of alternatives.

Let us informally illustrate the basic intuition for our new conditions by �rst recalling

what we know about classical rational choice in our setting, and then comparing its impli-

cations with those of the new notion of r�rationality. Choice functions satisfying classical
rationalizability (now called 1-rationalizability) are usually characterized in our simple set-

ting as the ones satisfying the following necessary and su¢ cient contraction condition: if

an alternative x is chosen for a set B, x must also be chosen from any subset of B that

still contains it. This condition provides a "top down" constructive method for the unique

rationalization associated to a rationalizable choice function. Just rank in �rst place the

alternative that is chosen when all of them are available, then rank second the one that is

chosen after just deleting the �rst, and so on.

Notice, however, that we could have formulated di¤erently these necessary and su¢ cient

conditions for 1�rationalizability. Here is another way to describe them, which will in fact
be the one inspiring the axioms we use in our general case. Take a choice function. Consider

the set of all alternatives that are chosen by that function for some subset of alternatives

that is not a singleton. If the choice function is 1�rationalizable, there must be one and
only one alternative that is never chosen, and that should be the one ranking in last place

in the rationalizing order. If we look at the family of all non-singleton subsets that do

not contain this last alternative, and then at all alternatives that are chosen for some of

these subsets, again there must be one and only one alternative that does not appear,

and it must be ranked second to last. This "bottom up" construction is the hint to an

alternative characterization of classical rationality, through the requirement that choices
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in a decreasing sequence of sets must exclude one alternative at a time.

Now, the same idea can be tried as a starting point to identify conditions for r�rationalizability.
For a given choice function, consider all the alternatives that are chosen from subsets con-

taining at least r + 1 alternatives. If all alternatives were in this set, then the choice

function could not be rationalized, because the alternative that is last in an eventual ratio-

nalizing order can never be chosen. So, some alternatives must never be chosen, and they

must be at most r. If only one is missing, we can assure that it is last in a rationalizing

order, if such exists. If several alternatives are never chosen, we will show then if a rational

order exists, then there is one that places each one of these unchosen alternatives in the

last position. Choose any of them (to be placed last) and look now at all subsets without

it that still have cardinality above r. Again, some alternative other than the deleted one

must never be chosen out of this restricted family of subsets. Our characterization result

is based on a precise formalization of this idea, that clearly extends the axiom that applies

to 1�rationalizable choice functions. Notice, however, that our rationalizations will not be
unique unless the choice function is indeed 1�rationalizable.1

Here are two examples that anticipate the kind of issues we deal with.

i) A choice function that is not 1�rationalizable but is 2�rationalizable. Let X =

fa1; a2; a3; a4g: Let F such that for any B with fa1; a4g � B; F (B) = a4 and otherwise

F (B) = ai where i is the minimum value in f1; 2; 3; 4g such that ai 2 B: This choice

function F is not 1�rationalizable . We can see this because F (fa1; a2; a4g) = a4 and

F (fa1; a2g) = a1 a violation of the standard contraction consistency condition. But we

can also see that it cannot be 1�rationalizable because for any ai 2 X; there exists B � X
with #B � 2 such that F (B) = ai:
Yet, notice that our choice function F is 2�rationalizable by the preference orders R,

R0;where a4Ra2Ra3Ra1 and a4R0a2R0a1R0a3:

ii) A choice function that is neither 1 nor 2�rationalizable, but is 3�rationalizable.
Let again X = fa1; a2; a3; a4g Let F such that F (X) = a3; F (B) = a4 for any B with

fa1; a4g � B  X; and otherwise F (B) = ai where i is the minimum value in f1; 2; 3; 4g
such that ai 2 B: Notice that this is the same function than in the preceding case, except for
its value in X. Yet, now the function is no longer 2�rationalizable, but is 3�rationalizable
by any order that does not rank a3 in the last position.

Now, any choice function F on a set of size n is obviously n�rationalizable, and in fact
also (n� 1)�rationalizable, as shown later. Hence, we can properly speak about the level
of rationality exhibited by any choice function F as given by the minimum value r(F ) for

1We shall provide a precise statement about non uniqueness in Corollary 1.
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which F is r(F )�rationalizable. We provide an algorithm to compute the rationality level
r(F ) associated with any given choice function, thus providing that notion with operational

content.

We then propose an even more �exible model of choice, where the level of rationality

that an agent displays when choosing from any given set B may vary with the set under

consideration. An agent�s level of rationality at each set can be described by a function

� where �(B) is the rank required for satisfaction when choosing from B: Then, a choice

function will be ��rationalizable if for some order R; the choice from any set B is among

the �(B)�best ranked alternatives according to R: And, again, we fully characterize the
choice functions that are � rationalizable, for any given �:

The notion that agents may decide to stop short of choosing their best alternative has

deep roots and multiple expressions. Recent work on demand theory by Gabaix (2014) and

by Aguiar and Serrano (2914) also assumes non-maximizing behavior. In a di¤erent vein,

Amartya Sen (see Sen (1993), for example) has described the apparently irrational behavior

of agents who consistently choose their second best out of the set of alternatives they are

proposed. The consequences of that behavior are discussed in Baigent and Gaertner (2010).

And our more direct reference point is the idea of satis�cing behavior, �rst introduced

by Herbert Simon (1955). When individuals are guided by utility functions, and the

comparisons among utility levels have a meaning, one can think of satis�cing behavior

as the one where the individual chooses among those alternatives that guarantee her a

minimum, satis�cing level of utility. Our purpose here is to develop a theory of satis�cing

behavior that is purely ordinal, and thus cannot appeal to any exogenous level of utility

as a reference. Within the ordinal context, one could still think of a formulation where

some absolute level of satisfaction, identi�ed with the one provided by some exogenously

�xed alternative, could set the frontier between satisfactory choices and those that are not.

This is the assumption in recent work by Caplin, Dean, and Martin (2011), Papi (2012),

Rubinstein and Salant (2006), and Tyson (2008). Our formulation is in a similar spirit,

but our notion of a satis�cing choice will be relative: agents will select one of the r�best
ranked alternatives among those available at any act of choice.

Our work, and that of those authors we just mentioned, does not preclude the as-

sumption that agents are still endowed with a preference ordering. Other papers in the

burgeoning literature on behavioral economics do, and propose alternative formulations of

the actual decision process followed by individuals, as the likely source of their departures

from rationality.

Some theories abandon the hypothesis that agents are guided by one order of preferences
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alone, and consider the possibility that choices might be generated by several preferences,

used in some organized manner. These include, for example, Apesteguia and Ballester

(2011), De Clippel and Eliaz (2010), Green and Hoiman (2008), Houy and Tadenuma

(2009), Kalai, Rubinstein and Spiegler (2002).

Other theories depart from the idea that agents maximize over the set of all feasible

alternatives. Observed choices may then be the best elements of some subset of available

alternatives, those that have been selected through some screening process. Examples

of this approach can be found in Cherepanov, Feddersen and Sandroni(2013), Caplin and

Dean (2011), Eliaz, Richter and Rubinstein (2011), Eliaz and Spiegler (2011) Horan (2010),

Lleras, Masatlioglu, Nakajima and Ozbay (2010), Manzini and Mariotti (2007 and 2013).

Still another approach is to reformulate the issue of rationality by expanding the set

of observables and assuming that information may be available on more complex objects,

like sequences of tentative choices over subsets, eventually leading to a �nal selection.

This route is particularly fruitful to model decision processes that involve search costs

and stopping rules, and is taken in papers like, Horan (2010), Masatlioglu, Nakajima, and

Ozbay (2013), Papi (2012) and Raymond (2013).

Our notions of r� and ��rationability can be connected with some behavioral models,
and proven to be incompatible with others. For example, when agents can only observe

a limited number of the available alternatives, due to search costs or other limitations,

they can still guarantee that their choices on a set B will not be ranked below some

threshold �(B). Hence, ��rationalizability will be among the necessary conditions to
be satis�ed by choice functions generated by these models. Similarly, processes based on

the initial screening of r�best elements, followed by a �nal choice among them, as in
Eliaz, Richter and Rubinstein (2011), will generate r�rationalizable choice functions. On
the other hand, we can prove that our notion of rationality is not implied, nor implies

the properties required by other models of choice, like the one proposed by Manzini and

Mariotti (2007), for example.2

The paper proceeds as follows. After this introduction, in Section 2 we formalize the

idea of r�rationalizability and provide a �rst characterization result. In Section 3 we de�ne
the degree of rationality of a choice function and provide an algorithm allowing to compute

that value. Then, in Section 4 discuss the notion of ��rationalizability, to cover the case
where the value of r can depend on the set from which the agent can choose. In section

5 we compare our approach with that of two important papers, just to prove by example

that our notion of rationalizability cannot be accomodated within some of the alternative

2We will elaborate this point in Section 5.
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proposals in the behavioral literature, but is compatible with others. Section 6 concludes.

2 r�Rationalizable Choice Functions
Consider a �nite set X of alternatives with #X = n � 3: Let D = 2X � f;g be the set of
all non-empty subset of alternatives. A choice function on X is a function F : D �! X

such that F (A) 2 A; for every A 2 D:
Let R be a preference relation over the set of all alternatives X. Speci�cally, R is a

complete, re�exive, antisymmetric, and transitive binary relation on X.3

Given a preference relation R on X and a subset A 2 D; let h(A;R) the maximal
alternative of a set A with respect to preference R: Formally

h(A;R) = x, xRy for every y 2 A:

Because R is complete and antisymmetric, #h(A;R) = 1 for every A 2 D.
Denote h1(A;R) = h(A;R); and de�ne for every t;

ht(A;R) = h(A�
t�1[
i=1

hi(A;R))

and

M r(A;R) =
r[
i=1

hi(A;R)

M r(A;R) is the set of elements in A that R ranks in r�th position or better.
To relax the assumption that an agent always chooses her best alternative, we say that

a choice function is r�rationalizable if there exists a preference relation on the alternatives
such that the one chosen for each subset is among its r�best ranked elements according
to that order. Formally,

De�nition 1 A choice function F is r�rationalizable if there exists a preference relation
R over the set of all alternatives X such that for every A 2 D;

F (A) 2
r[
i=1

hi(A;R) =M r(A;R):

Remark 1 Let r; r0 be such that r � r0 and F a choice function r�rationalizable, then
F is r0�rationalizable.

3A binary relation R on F is (i) complete if for all x; y 2 X, either xRy or yRx (ii) re�exive if for all
x 2 X; xRx; (iii) transitive if for all x; y; z 2 X such that xRyRz; xRz holds, and (iv) antisymmetric if,

for all x; y 2 X such that xRy and yRx, x = y holds:
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Remark 2 The concept of r�rationalizability does not impose any restrictions on the
possible choices of an agent for sets of size r or less. In particular, any choice function

is n�rationalizable when there are n alternatives. In fact, any choice function F on a

set of size n is (n � 1)�rationalizable by any preference relation R such that h(X;R) =

F (X), since we then have that for any A � X; F (A) 2 M (n�1)(A;R): Yet, not every

choice function is (n� 2)�rationalizable, as already proven by the second example in the
introduction.

We now introduce de�nitions leading to our �rst characterization result, and inspired

in the intuitions we provided in the Introduction about our "bottom up" approach.

Given E � X and r a natural number, de�ne

CrE = fB 2 D : # (B � E) > rg

Let Er = (Er0 ; ::; E
r
h+1) be such that

? = Er0  Er1  ��  Erh+1 = X

and

#
�
Erj+1 � Erj

�
=

(
1 if 0 � j < h
r if j = h

Let Er be the set of all Er satis�cing the above conditions.
Our �rst theorem provides necessary and su¢ cient conditions for a choice functions to

be r�rationalizable.
Theorem 1 Let X be a �nite set of alternatives with #X = n and let r be a natural

number with r � n. A choice function F on X is r�rationalizable if and only if there exist
Er 2 Er such that F (CrErj ) � X � E

r
j+1 for any j = 0; ::; h� 1:

Proof )) Let F be an r�rationalizable choice function. Assume that R� is a preference
relation over the set of all alternatives X such that for every A 2 D;

F (A) 2M r(A;R�):

De�ne Er1 = X �Mn�1(X;R�) and sequentially

Erj = X �Mn�j(X;R�)

for j � n� r and Ern�r+1 = X: Notice ? = Er0  Er1  ��  Ern�r+1 = X; with

#
�
Erj+1 � Erj

�
=

(
1 if 0 � j < n� r
r if j = n� r
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Let B be such that B 2 CrErj ; we must show that F (B) 2 X � Erj+1. Because F is an
r�rationalizable choice function,

F (B) 2M r(B;R�)

Since #
�
B � Erj

�
> r; then there exists z 2

�
B � Erj

�
such that

F (B)R�z:

Because F (B) 2
�
B � Erj

�
� Mn�j(X;R�); we have that F (B) 2 Mn�j+1(X;R�); which

implies that

F (B) 2 X � Erj+1:

() Let ? = Er0  Er1  ��  Erh+1 = X be such that

#
�
Erj+1 � Erj

�
=

(
1 if 0 � j < h
r if j = h

and F (CrErj ) � X � E
r
j+1 for any j = 0; ::; h� 1:

De�ne a preference relation R� over X as follows::

yR�x for every x; y such that y 2
�
Erj � Erj�1

�
and x 2

�
Eri � Eri�1

�
with i < j

We will show that F is r�rationalizable by R�. That is, for every A 2 D;

F (A) 2M r(A;R�):

Assume otherwise, that there existed A 2 D such that

F (A) = z =2M r(A;R�)

Notice that xR�z for every x 2M r(A;R�): Thus, there exists �{ such that

z 2 Er�{+1 � Er�{ : (1)

Since M r(A;R�) [ fzg � (A� Er�{ ) ; then A 2 CrEr�{ : This implies that F (A) 2 X � Er�{+1;
contradicting (1).

This concludes the proof. �

Although the formulation of Theorem 1 is in existential terms, there is a very speci�c

constructive element underlying it. The following Remark and the alternative characteri-

zation in Theorem 2 are intended to make it more explicit.
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Remark 3 Given Y � X, let T rY be a subset of alternatives that are chosen from any

set B such that the cardinality of (B \ Y ) is greater than r. Formally:

T rY = fx 2 Y : F (B) = x, for some B such that r < #(B \ Y )g : (2)

Here is how we can check for rationality and eventually constract the rationalizing

order. First look at the set T rX of those alternatives that are chosen for some subset of

size at least (r + 1). Clearly, there must be at least one that is not: otherwise, F is not

r�rationalizable, because there is no candidate for last position in a rationalizing order.
If that �rst requirement is satis�ed, chose any x 2 X � T rX and de�ne Er1 = fxg: Let
X1 = X � Er1 : If the size of X1 is equal to r; de�ne Er1 = X and we are done F is

r�rationalizable with elements in X1 in the top of the rationalizing order. Otherwise,

there will be subsets of X1 with size at least (r + 1). Look for those alternatives T rX1 that
are chosen from some subset B of X with size of (B \X1) larger than r. This set must

be strictly smaller than X1. Otherwise, there is no candidate to be the worse alternative

before those in X1 in the rationalizing order, and F is not r�rationalizable. If that second
test is still passed, chose any x 2 X1 � T rX1 and de�ne E

r
2 = E

r
1 [ fxg: Let X2 = X � Er2 ;

if the size of X2 is equal to r, de�ne Er3 = X and we are done, F is r�rationalizable with
elements in X2 in the top of the rationalizing order. Otherwise, there will be subsets of

X2 with size at least (r + 1). Compute the set T rX2 of alternatives that now obtain for
these subsets. Again, it must be that this new set is smaller than X2, and so on. Since

the necessary conditions in that sequence imply the nestedness of the sets T rXi, and X
is �nite, either they stop holding at some point, with #Xi > r, in which case F is not

r�rationalizable, or else they lead to a set Xi of size equal to r, and rationalizability holds.

Su¢ ciency is easily derived by ranking di¤erent subsets in such a way that those that are

still chosen in a certain iteration are ranked above those who have disappeared from the

T r�s in preceding steps.

Our next theorem reformulates our characterization result in terms that are close to

the process suggested by Remark 3.

Theorem 2 Let X be a �nite set of alternatives with #X = n and let r be a natural

number with r � n. A choice function F on X is r�rationalizable if and only if for any
Y � X with #Y > r; there exists y 2 Y such that F (B) 6= y for any B � X such that

#(B \ Y ) > r.
Proof: )) Let F be an r�rationalizable choice function. Assume that R� is a preference
relation over the set of all alternatives X such that for every A 2 D;

F (A) 2M r(A;R�):
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Let Y be any subset of alternatives and y 2 Y such that

yR�y for every y 2 Y:

Notice that

y =2M r(B;R�)

for any B such that #(B \ Y ) > r: Thus, F (B) 6= y.

() Assume that for every Y � X there exists y 2 Y such that F (B) 6= y for any B � X
such that #(B \ Y ) > r.
Consider X: There exists y1 2 X such that F (B) 6= y1 for any B � X such that

#B > r.4 De�ne

Er1 = fy1g:

Let X1 be such that X1 = X � Er1 : If #X1 = r, then

Er2 = X:

Otherwise, there exists y2 2 X1 such that F (B) 6= y2 for any B � X with #(B \X1) > r.

i.e. #(B � Er1) > r: De�ne
Er2 = E

r
1 [ fy2g:

Notice that F (B) =2 Er2 : Sequentially we can de�ne Er = (Er0 ; ::; Erh+1) to be such that

? = Er0  Er1  ��  Erh+1 = X

and

#
�
Erj+1 � Erj

�
=

(
1 if 0 � j < h
r if j = h

Let B be such that B 2 CrErj ; because #
�
B � Erj

�
> r, by construction, F (B) =2 Erj+1.

This implies that F (CrErj ) � X � Erj+1; for any j = 0; ::; h � 1: By Theorem 1, the choice

function F is r�rationalizable.
This concludes the proof. �

Let us show how we check for rationalizability and at the same time eventually construct

a rationalizable order, by examining two examples.

Example 2: Let X = fa1; :::; a5g. The choice function F : D �! X is de�ned as follows;

4In fact, all alternatives in the set X � T rX in Remark 3 will be candidates to play the role of y1. A

similar degree of freedom will apply when choosing the values yj in the iterative process that is described

in what follows.
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� If #B = 2; then

� i) If B = fa1; a5g, then F (B) = a1:

� ii) Otherwise, let B = fai; ajg and i� = minfi; jg; then F (B) = ai� :

� If #B = 3; then

� i) If a3 2 B, then F (B) = a3:

� ii) If a4 2 B and a3 =2 B, then F (B) = a4:

� iii) F (fa1; a2; a5g) = a2:

� If #B = 4; then

F (fa1; a2; a3; a4g) = a4 F (fa1; a2; a3; a5g) = a3 F (fa2; a3; a4; a5g) = a3
F (fa1; a2; a4; a5g) = a4 F (fa1; a3; a4; a5g) = a4

� If #B = 5; then F (fa1; a2; a3; a4; a5g) = a3:

Let us check whether F is 2�rationalizable5.
According to de�nitions, E20 = ?:
Now clearly,

X � T 2X = fx : @B such that 2 < #B and F (B) = xg = fa5g

Then E21 = fa5g; and X1 = X � fa5g
Next, consider

X � T 2X1 =
�
x 2 X � E21 : @B such that #

�
B � E21

�
> 2 and F (B) = x

	
= fa1; a2g:

Choose one alternative from the set fa1; a2g; say a1; and de�ne E22 = E21 [ fa1g = fa1; a5g
and X2 = X � fa1; a5g:
Therefore,

X � T 2X2 =
�
x 2 X � E21 : @B such that #

�
B � E22

�
> 2 and F (B) = x

	
= fa2g:

Then de�ne E23 = E
2
2 [ fa2g = fa1; a2; a5g:

5Notice that F is not 1� rationalizable, since for any i there exists B such that F (B) = ai.
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Now we can stop, because the size of X � E23 = X2 is equal to 2: De�ne E24 = X and

observe that

? = E20  E21  E22  E23  E24 = X

with #(E21 � E20) = # (E22 � E21) = # (E23 � E22) = 1 and #(E24 � E23) = 2 = r; F (CrE2j ) �
X � E2j+1 for any j = 0; 1; 2; 3:
Hence F is 2�rationalizable. �

Example 2 illustrates Theorem 1, with a function F is 2�rationalizable. Our next
example involves a function that is not 2�rationalizable.

Example 3 Let X = fa1; a2; a3; a4; a5g be the set of alternatives and F : D �! X the

choice function de�ned as follows,

� If #B = 2; then

� i) If B = fa1; a5g, then F (B) = a1:

� ii) Otherwise, let B = fai; ajg and i� = minfi; jg; then F (B) = ai� :

� If #B = 3; then

� i) If a3 2 B, then F (B) = a3:

� ii) If a4 2 B and a3 =2 B, then F (B) = a4:

� iii) F (fa1; a2; a5g) = a2:

� If #B = 4; then

F (fa1; a2; a3; a4g) = a1 F (fa1; a2; a3; a5g) = a3 F (fa1; a2; a4; a5g) = a4
F (fa1; a3; a4; a5g) = a3 F (fa2; a3; a4; a5g) = a3

� If #B = 5; then F (fa1; a2; a3; a4; a5g) = a2:

Let us check whether F is 2�rationalizable6.
According to de�nitions, E20 = ?:
Now clearly,

X � T 2X = fx : @B such that 2 < #B and F (B) = xg = fa5g:
6Notice that F is not 1� rationalizable, since for any i there exists B such that F (B) = ai.
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Which implies that E21 = fa5g and de�ne X1 = X � fa5g
Notice that

X1�T 2X1 =
�
x 2 X � E21 : 9B such that #

�
B � E21

�
> 2 and F (B) = x

	
= fa1; a2; a3; a4g:

But this means that, for every y 2 Y = fa1; a2; a3; a4g we can �nd B with #(B \ Y ) > 2
such that F (B) = y: Theorem 2 implies that F is not 2�rationalizable. �

Our conditions for r�rationalizability allow us to discuss the following issues. What
is the number of possible r�rationalizations for a given choice function?. How much can
we learn about the actual ranking of any given alternative in a given preference order,

by observing the choice function of an r�rational agent who has that order?. The next
Corollary and Remark give answers to these questions.

Using our notation in Remark 3, de�ne sequentially

T rX = fx 2 X : F (B) = x, for some B such that r < #Bg :

X1 = T rX ; and

T r
Xj
=
�
x 2 Xj�1 : F (B) = x, for some B such that #

�
B \Xj�1

�
> r

	
:

Observe that if a choice function F on X is r�rationalizable, then

X = X0 ! X1 ! � � � ! Xj

where #Xj = r:

This allows us to provide an exact count of the number of rationalization that the

choice function F will admit.

Corollary 1 Consider an r�rationalizable choice function F: This function is rational-
izable by exactly r(F ) di¤erent orders, where

r(F ) = (r!) �

24 jY
j=1

#
�
Xj�1 �Xj

�35
The bounds for that number are

(r!) � r(F ) � rqs(r!)

where n = qr+s; with 0 � s < r and q � 0; corresponding to the case where the cardinality
of (Xj�1 �Xj) is minimal and maximal for every j; respectively.
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Uniqueness only arises for the classical case where r = 1:

Remark 4 Notice that the rank of any alternative in di¤erent rationalizations of the

same choice function will move between bounds that can be computed from the values of

the sets Xj in our iterative constructive process. These bounds may be very tight or very

loose. For some choice functions the rank of some alternatives in any rationalization may

be completely determined, while in some others it may be completely undetermined.

3 The degree of rationality of a choice function

In this section we de�ne a natural measure of the degree of rationality that is exhibited

by a choice function F , and we then provide an algorithm that shows how we can actually

compute that degree of rationality in an e¤ective manner.

De�nition 2 A choice function F exhibits a degree of rationality r(F ) i¤F is r(F )�rationalizable,
and it is not r��rationalizable for any r�< r(F ):7

We may naturally associate this degree of rationalizability with the search for a "best

approximation" to a fully rational preference, in a similar spirit than Afriat (1973), Hout-

man and Maks (1985), Varian (1990) or, more recently, Apesteguia and Ballester (2014).

In our case, for any given choice function C, and any given linear order P; compute the

vector indicating, for each subset B of alternatives, the rank of C(B) according to P: Find

a P that minimizes the maximal component of these vectors across all possible preferences,

and let r be the value of the maximal component of the vector associated to P . Then, r

will correspond to C 0s degree of rationality, and any such P is an r�rationalization for C:
We turn to our proposed algorithm. We do not claim it to be particularly e¢ cient, but

it is certainly simple enough to prove that it is possible to associate a degree of rationality

to every choice function.

The algorithm follows the basic steps suggested by Remark 3 and Theorem 2. We start

by identifying, iteratively, the smallest set size such that, when choosing from all sets of

at least that size, the set of alternatives that would be eventually chosen is smaller than

the initial set of alternatives. This gives us a �rst bound on the rationality level. That

bound is de�nitely chosen if no sets of its size or more are left when removing the unchosen

alternatives from X:

7This notion is in a similar spirit than the exercise in Salant and Rubinstein (2006), where the minimum

number of di¤erent lists necessary to rationalize a given choice function is also calculated. But of course,

we refer to diferent concepts of rationality.
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Otherwise, the algorithm continues in a similar manner, but considering only the choices

from classes of sets that are nested, and eventually increasing, if necessary, the rationality

bound.

Algorithm:
Input: A �nite set of alternatives X, with #X = n � 3 and F a choice function on X:

Step 0: Set Er0 := ?:

Step 1: For r = 0; ::; n� 1; de�ne

T rX = fx 2 X : F (B) = x, for some B such that r < #Bg

Step 2: Let r0 be such that T r0X = X; T r0+1X  X: De�ne r = r0 + 1:
Step 3: Let x be such that x 2 X � T rX , de�ne Er1 = fxg and Xr

1 = X � Er1 Set j := 1:

Step 4: If #
�
X � Erj

�
= Xj = r; then de�ne Erj+1 = X; r

� := r and go to step 8.

Step 5: Set j := j + 1;

T rXj = fx 2 Xj : F (B) = x, for some B such that #(B \Xj) > rg

Notice that r < #Xj:

Step 6: If #T rXj = #Xj; set r := r + 1 and go to step 3.

Step 7: If #T rXj < #Xj�1; de�ne Erj = E
r
j�1 [ fxg with x 2

�
Xj � T rXj

�
: Go to step 4.

Step 8: The choice function F is r��rationalizable. De�ne r� = r(F ):

END.

Theorem 3 The natural number r(F ) is the minimum such that the function F is r(F )�
rationalizable.

Proof Let r� = r(F ) be obtained in step 7.

First, we will prove that F is r��rationalizable. It follows clearly from step 4 and

Theorem 1 because there existsE 2 Er� such that F (CrEr�j ) � X�E
r�
j+1 for any j = 0; ::; h�1:

Now, we have to prove that F is not (r� � 1)�rationalizable. Assume otherwise, that
there exists R such that for any Y � X;

F (Y ) 2M (r��1)(Y;R): (3)
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The algorithm stops for r = r�: Then for r = r� � 1 the algorithm did not lead to

Step 8, but proceeded to steps 5 and 6. But then, the only chance for the algorithm to

�nally stop after having re-visited step 4 is that at some point it reverted to step 3, and

this implies that there exists j such that r < #T rXj and T
r
Xj
= Xj:Notice that, for Y = Xj

(#Y > r); and for any x 2 Y 9B such that #(B \ Y ) > r; and F (B) = x. But then,

Theorem 2 implies that F is not (r� � 1)�rationalizable.
This concludes the proof. �

We illustrate how the algorithm works with the following example.

Example 4 Let X = fa1; a2; a3; a4; a5g be the set of alternatives and F : D �! X the

choice function de�ned as follows for each subset of size 2 or larger:

� F (fai; ajg) = aj, with j > i

� If #B = 3; then

� i) If a3 2 B, then F (B) = a3:

� ii) If a4 2 B and a3 =2 B, then F (B) = a4:

� iii) F (fa1; a2; a5g) = a2:

� If #B = 4; then

F (fa1; a2; a3; a4g) = a1 F (fa1; a2; a3; a5g) = a3 F (fa1; a2; a4; a5g) = a4
F (fa1; a3; a4; a5g) = a3 F (fa2; a3; a4; a5g) = a3

� If #B = 5; then F (fa1; a2; a3; a4; a5g) = a2:

The algorithm

Step 0: Set E0 = ? and X = T0:

Step 1: For r = 0; ::; 4; de�ne

T rX = fx 2 X : F (B) = x, for some B such that r < #Bg

That is: T 0X = T 1X = X; T 2X = fa1; a2; a3; a4g; T 3X = fa1; a2; a3; a4g; T 4X = fa2g:

Step 2: Set T 1X1 = T
0
X = X and T 2X1  X; r0 = 1 and r = 2:

Step 3: De�ne E21 = fa5g and X1 = X � fa5g:

Step 4: Because #(X1) > 2; then go to step 5.
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Step 5: De�ne

T 2X1 = fx 2 X1 : F (B) = x, for some B such that #(B \X1) > 2g =
fa1; a2; a3; a4g:

Step 6: Because T 2X1 = X1 = (X � E21) = fa1; a2; a3; a4g; then de�ne r = 3 and go to

step 3. Notice F is not 2�rationalizable.

Step 3: Because T 3X = fa1; a2; a3; a4g; de�ne E31 = fa5g and X1 = X � fa5g then go to
step 4.

Step 4: Because #(X � E31) > 3; then go to step 5.

Step 5: De�ne

T 3X1 = fx 2 X1 : F (B) = x, for some B such that #(B \X1) > 3g =
fa1; a2g:

Because #T 3X1 < #X1; go to step 7.

Step 7: Because a4 2
�
X1 � T 3X1

�
: De�ne E32 = E31 [ fa4g = fa4; a5g and X2 = X �

fa4; a5g: Go to step 4.

Step 4: Because #X2 = 3 = r; then de�ne E33 = X2 and go to step 8.

Step 8: The choice function F is 3�rationalizable. Notice that

? = E30  E31 = fa5g  E32 = fa4; a5g  E33 = X:

END.

4 A further extension of the rationalizability concept

In this section we consider the general case where the same agent may be content, or not,

with getting her r�ranked alternative, depending on the context where this choice occurs.
For example, a larger r may be required when choosing from a set of similar alternatives,

while a smaller level of r may apply when the states involved when making a potential

mistake are larger. Our de�nitions and results are similar to those already presented, and

we shall thus be a bit more expedient in the presentation. The proofs are relegated to

the appendix, but examples are provided to illustrate the main aspects of the proposed

extension.
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Consider a �nite set X of alternatives with #X � 3; and a function � : D �!
f1; ::; ng that determines a level of relative ordinal satis�cing behavior for each subset B of
alternatives. We say that a choice function is ��rationalizable if there exists a preference
relation on the alternatives such that the one chosen for each subset A of alternatives is

among the �(A)��rst ranked elements of the order among those in the sets. Formally:
De�nition 3 A choice function F is �-rationalizable if there exists a preference relation

R over the set of all alternatives X such that for every A 2 D;

F (A) 2
�(A)[
i=1

hi(A;R) =M�(A)(A;R):

Given a natural number r 2 N; we say that F is r�rationalizable if it is ��rationalizable
with �(B) = r:

Given E � X and a function � : D �! f1; ::; ng, de�ne

C�E = fB 2 2X : # (B � E) > �(B)g

Let E� = (E�0 ; ::; E
�
h+1) be such that

? = E�0  E�1  ��  E�h+1 = X

and

#
�
E�j+1 � E�j

�
=

(
1 if 0 � j < h
r if j = h

r have to be such that C�E�h = ?:
8 De�ne E� the set of all E� satis�cing the above conditions.

Our theorems provide necessary and su¢ cient conditions for a choice function to be

�-rationalizable.

Theorem 4 Let X be a �nite set of alternatives with #X = n and a function �. A

choice function F on X is ��rationalizable if and only if there exist E� 2 E� such that
F (C�E�j ) \ E

�
j+1 = ? for any j = 0; ::; h� 1:

Proof See appendix.

Again, we can reformulate the characterization in a form that is parallel to Theorem

2. �

Theorem 5 Let X be a �nite set of alternatives with #X = n and a function �. A

choice function F on X is ��rationalizable if and only if for every Y � X there exists

y 2 Y such that F (B) 6= y for any B � X such that #(B \ Y ) > � (B).
Proof See appendix. �

8Observe that r � minfB�X:�(B)<#Bg �(B):
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Notice that given a function �(B) = #B; every choice function F is ��rationalizable.
Moreover, let �; �0 be such that �(B) � �0(B) for every B. If the choice function F is

��rationalizable, then F is �0�rationalizable.

5 Two comparative examples

5.1 A comparison of r�rationalizability with the rationale of
shortlist methods

As an illustration that our notion of rationalizability characterizes behavior that is inde-

pendent from the one predicated by other models, we compare its implications with those

of the following celebrated proposal by Manzini and Mariotti (2006).

De�nition 4 A choice function F is a Rational Shortlist Method (RSM) whenever there

exists an ordered pair (P1; P2) of asymmetric relations, with Pi � X �X such that

F (A) = max(max(A;P1);P2):

Manzini and Mariotti show that choice functions of this form do not need to be

1�rational. Yet, they identify two properties that fully characterize them.
Expansion: For all S; T � X; if x = F (S) = F (T ); then x = F (S [ T ):

WARP� : If fx; yg � R � S and F (S) = F (fx; tg) = x; then y 6= F (R):

Theorem (Manzini-Mariotti): The choice function F is RSM if and only if it satis�es

WARP� and Expansion.

We�ll show that their choice functions may not satisfy our notion of rationality and,

conversely, that our functions need not be of their form.

Example 5 The example shows a 2-rationalizable choice function F that is not RSM .

LetX = fx1; x2; x3; x4g; P an strict order onX; x1Px2Px3Px4, and F be a choice function
de�ned as follows:

F (A) =

(
max(A;P ) if A 6= fx1; x2; x3g

x2 if A = fx1; x2; x3g

Observe that F is 2�rationalizable but is not RSM: This is because F (fx1; x2; x3g) = x2;
F (fx2; x3; x4g) = x2; F (X) = x1; and therefore F does not satisfy expansion.
Example 6 The following example shows that there exists a RSM choice function F ,

that is not 2-rationalizable. Let X = fx1; x2; x3; x4; x5g be the set of alternatives. Let R1
be the following partial order;

x4R1x1 and x5R1x2:
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Let R2 be a strict order on X;

x1R2x2R2x3R2x4R2x5

Observe that,

max(fx1; x2; x3g;R1) = fx1; x2; x3g;

max(fx1; x2; x3; x4g;R1) = fx2; x3; x4g;

and

max(fx1; x2; x3; x4; x5g;R1) = fx3; x4; x5g:

Observe that for every S � X;

F (S) = max (max(S;R1); R2) :

Then,

F (fx1; x2; x3g) = x1;

F (fx1; x2; x3; x4g) = x2;

and

F (fx1; x2; x3; x4; x5g) = x3:

Let Y = fx1; x2; x3g, observe that for each xi 2 Y there B such that #(B \ Y ) � 3 and
F (B) = xi: Theorem 2, implies that F is not 2�rationalizable.
The above examples show that the two models lead to independent restrictions on the

set of possible choice functions they generate.

5.2 Choosing from a set of chosen �nalists

We can connect our work with that of Eliaz, Richter and Rubinstein in their article "Choos-

ing the two �nalists" (2011). These authors characterize "top two" correspondences that

select the best two outcomes from an order, given each subset of alternatives. We can

extend our proposed notion of rationalizability and say that these correspondences are

2�rationalizable. And then, one can see that our set of 2�rationalizable choice func-
tions would consist of all selections from some 2�rationalizable choice correspondence.
In a natural manner, r�rationalizable choice correspondences could also be de�ned and
characterized, and selections from them would coincide with our r�rationalizable choice
functions.

Hence, our notion of r�rationalizability is a necessary conditions for all those processes
that may be described as choosing r �nalists in a �rst stage, and then using some additional
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criterion to narrow down the choice from any set to a singleton. Of course, additional

restriction could be imposed on choice functions when being speci�c about the criterion

for �nal selection. Just to illustrate this point, here are some suggestions on how to

complement the choice of two �nalists.

Assume, for example, that the �nal choice between two �nalists was to be made by a

committee that uses majority rule with tie breaking. Given any preference pro�le on the

set of alternatives X, the committee�s majority rule will be a tournament, and for each

pair of �nalists the tournament will be used as the selection device. Then, clearly the

choice function that we shall obtain will be 2�rationalizable, but not any 2�rationalizable
choice function could be derived from that process. This is because the committee will

choose the same alternative out of each pair x; y regardless of the set B from which these

two were picked as �nalists. Thus, a choice function selected by majority from a two-top

correspondence will satisfy the following additional condition.

Condition 1 Given fa; bg  B and F (fa; bg) = a 6= F (B) = b; there must exist

c 2 B � fa; bg such that a 6= F (C); for every C with fa; b; cg � C:
In fact, rationalizability plus condition 1 fully characterize the set of choice functions

that can be obtained from the two-stage process we describe, provided the number of

committee members is large enough. We express this fact as follows.

Remark 6 A choice function F can be generated by choosing the best two candidates

from an order and then selecting the one that has a majority in a committee of size larger

than the total number of alternatives if and only if it is 2�rationalizable and satis�es
condition 1.

We leave the detailed proof of the Remark 6 to the reader, but note that it relies on the

fact that any given tournament on a set of alternatives X can be generated as the majority

relation for some committee whose size is larger than that of X (McGarvey (1953), Stearns

(1959), see also Moulin (1988)).

A further narrowing down of the preceding class would obtain if we required the selec-

tion to be made by choosing the maximal element of a transitive relation, not necessarily

the same as the one used to choose the �nalists. This particular case, where further re-

strictions should be imposed on the resulting choice function, has been studied by Bajraj

and Ülkü (2014).

Our main point is made through this analysis of the case for two �nalists. These screen-

ing processes, coupled with a criterion to choose from pairs, generate 2�rationalizable
choice functions, which may be more or less restricted in scope depending on the second

stage selection criterion.

Similarly, the choice of r��nalists, along with a choice function on subsets of size r,
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would give rise to r�rationalizable choice functions, whose additional properties will be
determined by the choice function in question.

6 Conclusions

We conclude by acknowledging some of the limitations of our present approach and by

suggesting some further lines of work.

Our analysis is limited to �nite sets of alternatives. Extending the notion of second

best or of r�best alternatives to sets with a continuum of alternatives is non-trivial. We

have already mentioned the important and recent literature on demand theory that also

considers non-maximizing agents (Gabaix X. 2014, Aguiar V. and Serrano R., 2014). Ob-

viously, it starts from an opposite end, where a continuous set of alternatives is the natural

assumption. Even if these two ends do not meet, we feel that our very simple formula-

tion of the basic choice problem is also a natural starting point. In particular, Aguiar

and Serrano�s de�nition of the "size" of bounded rationality is in a similar spirit than our

calculations of the rationality level of a choice function, in Section 3.

We also limit attention to choice functions, and one may want to see similar results

for the case of correspondences. For example, in the case of 2�rationalizability, we may
want to characterize the behavior of agents may who choose several alternatives belonging

to their best and second best indi¤erence classes within a set. That would be consistent

with the assumption that agents�preferences may be weak orders. There are several ways

to make this idea more precise, and we have partial results in the same spirit as the ones

presented here.

On the positive side, the assumption that we have information on the choices over all

possible sets is not a limitative one. We can still discuss the rationalizability of choice

functions de�ned on any family of subsets, by just assuming that our � function assigns

to those sets on which we have no information a value equal to its cardinality.

Finally, if one was convinced that the present proposal is a reasonable alternative to

full rationality, it would be worth investigating the consequences on the theory of games

that would derive from assuming that agents behave accordingly.
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7 Appendix

Theorem 4 Let X be a �nite set of alternatives with #X = n and a function �. A

choice function F on X is ��rationalizable if and only if there exists E 2 E� such that
F (C�E�j ) \ E

�
j+1 = ? for any j = 0; ::; h� 1:

Proof )) Let F be an ��rationalizable choice function. Assume that R� is a preference
relation over the set of all alternatives X such that for every A 2 D;

F (A) 2M�(A)(A;R�):

De�ne E�1 = X �Mn�1(X;R�) and sequentially

E�j = X �Mn�j(X;R�)

for j � n� r and E�n�r+1 = X; where r = minfB�X:�(B)<#B �(B): Notice that ? = E�0  
E�1  ��  E�n�r+1 = X; with

#
�
E�j+1 � E�j

�
=

(
1 if 0 � j < n� r
r if j = n� r

Let B be such that B 2 C�Erj ; we have to show that F (B) =2 E
r
j+1. Because F is an

��rationalizable choice function,

F (B) 2M�(B)(B;R�)

Since #
�
B � Erj

�
> �(B); there exists z 2

�
B � E�j

�
such that

F (B)R�z:

Because z; F (B) 2
�
B � E�j

�
�Mn�j(X;R�); we have that F (B) 2Mn�j+1(X;R�) which

implies that

F (B) =2 E�j+1:
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() Let ? = E�0  E�1  ��  E�h+1 = X be such that

#
�
E�j+1 � E�j

�
=

(
1 if 0 � j < h
r if j = h

and F (C�E�j ) \ E
�
j+1 = ? for any j = 0; ::; h� 1:

De�ne a preference relation R� over X as follows:

yR�x for every x; y such that y 2
�
E�j � E�j�1

�
and x 2

�
E�i � E�i�1

�
with i < j

We will show that F is ��rationalizable by R�. That is, for every A 2 D;

F (A) 2M�(A)(A;R�):

Assume otherwise, that there existed A 2 D such that

F (A) = z =2M�(A)(A;R�)

Notice that xR�z for every x 2M�(A)(A;R�): Thus, there exists i such that

z 2 E�
i+1
� E�

i
: (4)

Since M�(A)(A;R�) [ fzg �
�
A� E�

i

�
; then A 2 C�E�

i
: This implies that F (A) =2 Er

i+1
;

contradicting (4).

This concludes the proof. �

Theorem 5 Let X be a �nite set of alternatives with #X = n and a function �. A

choice function F on X is ��rationalizable if and only if for every Y � X there exists

y 2 Y such that F (B) 6= y for any B � X such that #(B \ Y ) > � (B).
Proof: )) Let F be an ��rationalizable choice function. Assume that R� is a preference
relation over the set of all alternatives X such that for every A 2 D;

F (A) 2M�(A)(A;R�):

Let Y be any subset of alternatives and y 2 Y such that

yR�y for every y 2 Y:

Notice that for every B such that #(B \ Y ) > �(B); we have that

y =2M�(B)(B;R�):

Thus, F (B) 6= y.
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() Assume that for every Y � X there exists y 2 Y such that F (B) 6= y for any B � X
such that #(B \ Y ) > �(B).
Consider X: Then there exists y1 2 X such that F (B) 6= y for any B � X such that

#B > �(B). De�ne

E�1 = fy1g:

Consider X1 = X � E�1 : If for any B; #(X1 \B) < �(B), then de�ne

E�2 = X:

Otherwise, there exist y2 2 X1 such that F (B) 6= y2 for any B � X with #(B \X1) >

�(B). i.e. #(B � E�1 ) > �(B): De�ne

E�2 = E
�
1 [ fy2g:

Notice that F (B) =2 E�2 : Sequentially we can de�ne, E� = (E�0 ; ::; E�h+1) be such that

? = E�0  E�1  ��  E�h+1 = X

and

#
�
E�j+1 � E�j

�
=

(
1 if 0 � j < h
r if j = h

Let B be such that B 2 C�E�j : Since #
�
B � E�j

�
> �(B), by construction, F (B) =2 E�j+1.

This implies that F (C�Erj ) \E
�
j+1 = ?; for any j = 0; ::; h� 1: Theorem 4, implies that the

choice function F is ��rationalizable.
This concludes the proof. �

The following example illustrates the family of subset of alternatives that we are con-

structing.

Example 7: X = fa1; :::; a5g the set of alternatives. The choice function F : D �! X is

de�ned as follows; for each subset of size 3 or larger:

� If #B = 3; then

� i) If a3 2 B, then F (B) = a3:

� ii) If a4 2 B and a3 =2 B, then F (B) = a4:

� iii) F (fa1; a2; a5g) = a2:

� If #B = 4; then

F (fa1; a2; a3; a4g) = a4 F (fa1; a2; a3; a5g) = a3 F (fa1; a2; a4; a5g) = a4
F (fa1; a3; a4; a5g) = a1 F (fa2; a3; a4; a5g) = a3
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� If #B = 5; then F (fa1; a2; a3; a4; a5g) = a3:

Let � : f1; ::; 5g ! f1; ::; 5g be de�ned by

�(1) = 1 �(2) = 2 �(3) = 2 �(4) = 3 �(5) = 1

That is, it has the same value for two subsets of equal cardinality.

Now clearly,

T �X = fx 2 X : F (B) = x, for some B such that �(#B) < #Bg = fa1; a2; a3; a4g

This implies that E�1 = fa5g: De�ne X1 = X � fa5g = fa1; a2; a3; a4g:
Notice that

T �X1 = fx 2 X1 : F (B) = x, for some B such that #(B \X1) > �(#B)g = fa3; a4g:

Because a1 2 X1 � T �X1 ; de�ne E
�
2 = E�1 [ fa5g = fa1; a5g and X2 = (X � E�2 ) =

fa2; a3; a4g:
Consider

T �X2 = fx 2 X2 : F (B) = x, for some B such that #(B \X2) > �(#B)g = fa3g:

Since a2 2 X2 � T �X2, de�ne E
�
3 = E

�
2 [ fa2g = fa1; a2; a5g and X3 = X � fa1; a2; a5g

Therefore,

T �X3 = fx 2 X3 : F (B) = x, for some B such that #(B \X3) > �(#B)g = fa3g:

Since a4 2 X3�T �X3, then setE
�
4 = E

�
3 [fa4g = fa1; a2; a4; a5g andX4 = X�fa1; a2; a4; a5g:

Clearly E�5 = X:

Therefore ? = E�0  E�1  E�2  E�3  E�4  E�5 = X; and by theorem 5 the function

F is ��rationalizable. �

27


